Correlation
The correlation is defined as the measure of linear association between two variables.
A single value, commonly referred to as the correlation coefficient, is often needed
to
describe this association.
The value has two special properties. First, most estimates of correlation are bounded
by
-1 and 1. If the correlation is exactly -1, there is a perfect, negative linear association
between the two variables; the scatterplot of the two variables fall along one line
with
negative slope. Conversely, if the correlation is exactly 1, there is a perfect, positive
linear correlation. Secondly, the square of the correlation describes the amount
of
variability in one variable that is described by the other variable. It should be
noted,
however, that the correlation coefficient provides no explanation about the physical
relationship between the variables.
Caveats / limitations associated with linear correlation:
- Correlation does NOT imply causation or a physical relationship of any kind.
- Correlations are only associated with observed instances of events; further conclusions
cannot be inferred from correlations.
- The two datasets must contain similar grids (i.e., independent variables) over which
the
correlation coefficient is calculated.
*NOTE: The examples below only illustrate correlations over temporal grids. You may
correlate
over spatial grids by replacing [T] with [X], [Y], [X Y], etc.
The Pearson Product-Moment Correlation
- Pearson product-moment correlation coefficient is the technically correct term for
the commonly used term, correlation coefficient.
- Calculated by taking the ratio of the sample covariance of the two variables to the
product of the two standard deviations.
- Illustrates the strength of linear relationships.
- Coefficient is neither robust nor resistant.
- Not robust because strong nonlinear relationships between the two variables may not be recognized.
- Not resistant because it is sensitive to outlying points.
The core of the Pearson correlation coefficient is the covariance between the two
variables, or in this case, x and y.
Look at the scatterplot below, which illustrates two variables that are positively
correlated.
The horizontal and vertical lines represent the mean of the data plotted on the y-axis
and the
x-axis, respectively.
For points in quadrant I, both of the x and y values are larger than their respective
means.
These points will contribute positive terms to the correlation coefficient.
In quadrant III, both the x and y values are less than their respective means, so
in the formula for correlation coefficient, the product of the two terms in parenthesis
is positive.
These points also contribute positive terms to the correlation coefficient.
Conversely, points in quadrants II and IV contribute negative terms to the correlation
coefficient. Since most of the points fall in quadrants I and III,
the correlation coefficient will be dominated by positive terms.
Example: Find the Pearson product-moment correlation between maximum and minimum temperatures
at Toyko, Japan for August 1976.
Locate Dataset, Station and Maximum Temperature Variable |
- Select the "Datasets by Catagory" link in the blue banner on the Data Library page.
- Click on the "Atmosphere" link.
- Select the
NOAA NCDC GDCN dataset.
- Click on the "searches" link to the right of the map.
- In the Name text box under the Searches subheading, enter Tokyo.
- Click the Search NOAA NCDC GDCN button.
- Click on the number "47622" which appears below the search text box.
CHECK
You have selected the station identification number for Tokyo, Japan.
- Select the "Max Temperature" link under the Datasets and Variables subheading. CHECK
|
Select Temporal Domain |
- Click on the "Data Selection" link in the function bar.
- Enter the text 1 Aug 1976 to 31 Aug 1976 in the Time text box.
- Press the Restrict Ranges button and then the Stop Selecting button.
CHECK
|
Select Minimum Temperature and Temporal Domain |
|
Calculate Pearson Product-Moment Correlation Coefficient |
- Again in the Expert Mode text box, enter the following line:
[T] correlate
- Press the OK button. CHECK
The [T] correlate command computes the Pearson product-moment correlation coefficient for the data
over the given range: August 1st-31st, 1976.
The result should be located under the Expert Mode text box in bold: 0.8239428.
The relatively high correlation coefficient is easily explained. Warm days are usually
associated
with warm nights and cold days are usually associated with cold nights.
|
Spearman Rank Correlation
- Data is first sorted and each value assigned a rank, 1 assigned to the lowest value.
- Spearman rank calculated by taking the Pearson product-moment correlation of the ranks
of the datasets.
- In cases of ties, where a particular data value appears more than once, all equal
values
assigned their average rank.
- Robust and resistant alternative to the Pearson product-moment correlation because
it is
less sensitive to outlying values.
- The rank and product-moment correlations will have dissimilar values due to the different
sensitivities of the two methods.
Example: Find the Spearman rank correlation between maximum and minimum temperatures at
Toyko, Japan for August 1976.
Locate Dataset, Station and Maximum Temperature Variable |
*NOTE: This example uses the same dataset, variable, and ranges as the previous example.
- Select the "Datasets by Catagory" link in the blue banner on the Data Library page.
- Click on the "Atmosphere" link.
- Select the
NOAA NCDC GDCN dataset.
- Click on the "searches" link to the right of the map.
- In the Name text box under the Searches subheading, enter Tokyo.
- Click the Search NOAA NCDC GDCN button.
- Click on the number "47622" which appears below the search text box.
CHECK
You have selected the station identification number for Tokyo, Japan.
- Select the "Max Temperature" link under the Datasets and Variables subheading. CHECK
|
Select Temporal Domain |
- Click on the "Data Selection" link in the function bar.
- Enter the text 1 Aug 1976 to 31 Aug 1976 in the Time text box.
- Press the Restrict Ranges button and then the Stop Selecting button.
CHECK
|
Select Minimum Temperature and Temporal Domain |
|
Calculate Spearman Rank Correlation Coefficient |
- Again in the Expert Mode text box, enter the following line:
[T] rankcorrelate
- Press the OK button. CHECK
The [T] rankcorrelate command computes the Spearman correlation coefficient by correlating the ranks of
both datasets over the given time range: August 1, 1976 to August 31,1976. The result
should be located under the Expert Mode text box in bold: 0.8568417.
As in the previous example, there is a relatively high correlation between the two
sets of data.
|
Lagged Correlation
- Lagged correlations found by correlating a lagged dataset with another unlagged dataset
using the Pearson product-moment method.
- Lagged data computed by shifting data by a certain unit of time, either forward or
backward.
- A positive (negative) lag in time refers to a later (earlier) time. For example,
in a data set with a monthly time step, a data point in February 2000 lags the January
2000 data point by a +1 month lag.
- Practical in climatology: often greatest correlation between two variables exhibited
using a
lagged time step.
- A lag-0 system has no lag applied to it.
Example: Find the lagged correlation between sea surface temperature anomalies and the Southern
Oscillation Index from January 1985 to December 2003.
Locate Dataset and Variable |
-
Select the "Datasets by Catagory" link in the blue banner on the Data Library page.
- Click on the "Air-Sea Interface" link.
- Scroll down the page and select the
NOAA NCEP EMC CMB GLOBAL Reyn_Smith dataset.
- Click on the "Reyn_SmithOIv2" link.
- Click on the "monthly" link.
- Click on the "Sea Surface Temperature Anomaly" link under the Datasets and Variables
subheading.
CHECK
|
Select Temporal Domain |
- Click on the "Data Selection" link in the function bar.
- Enter the text Jan 1985 to Dec 2003 in the Time text box.
- Press the Restrict Ranges button and then the Stop Selecting button.
CHECK
|
Add the Standardized SLP Difference SOI Index Dataset with Temporal Domain |
- Press the OK button. CHECK
The above command will enter the SOI dataset into the interface with the same domain
as the SSTA dataset.
|
Compute Lags and Correlate |
- In the Expert Mode text box, enter the following line below the text already there:
T -6 1 6 shiftdatashort
- Press the OK button. CHECK
Here, the shiftdatashort function will shift the SOI data by several lags in time, in effect creating several
lagged versions of the data. A new grid will be created with _lag appended to the grid name. In this case 13 lagged versions of the SOI data (from
lag -6 to +6 months) will be assigned to the T_lag grid. The monthly time grid "T" will still exist for both the SST and SOI data,
but for the SOI data, the time grid will be shortened by six months at each end such
that the remaining time grid will include only those time points that are common to
all the lagged versions of the SOI data. As mentioned earlier, a positive (negative)
lag in time refers to a later (earlier) time. In this case, the lags are all applied
to the SOI data. For T_lag = 0, January 2000 SOI data are matched with January 2000 SST data. For T_lag = +1, February 2000 SOI data are matched with January 2000 SST data. So, at T_lag = +1, the February 2000 SOI data are assigned to January 2000 in the time grid.
For T_lag = -1, the December 1999 SOI data are assigned to January 2000 (and matched with the
January 2000 SST data), and so on for each lag. Complete documentation on the shiftdatashort function is available here.
- Enter the following command in the Expert Mode text box below the text already there:
[T] correlate
- Press the OK button. CHECK
The Pearson product-moment method is used to correlate the sea surface temperature
anomalies with the Southern Oscillation Index at each lag interval
(i.e. 13 different correlations are calculated).
|
View Results |
- To see the results of this operation, choose the viewer window with land shaded in
black. CHECK
*NOTE: The image may take a few seconds to load.
- Select different lags by changing the number in the T_lag text box located near the
top of the viewer.
The image below corresponds to a -6 lag.
Pearson Correlation Between SSTA and SOI for -6 Lag
Notice the strong negative correlations in the Eastern Pacific. By convention, a
negative
Southern Oscillation value corresponds to warmer-than-average conditions in the equatorial
Pacific while a positive value corresponds to cooler-than-average conditions. Therefore,
a
negative correlation between SSTA's and SOI values is expected, as shown in the above
image.
|
Autocorrelation
- The correlation between values of the same variable at different times.
- Sometimes referred to as serial correlation.
- Autocorrelation coefficient is calculated by substituting lagged data pairs into the formula for the Pearson
product-moment correlation coefficient.
- Autocorrelation function is the collection of autocorrelation coefficients computed for various lags.
- Function always begins with an autocorrelation coefficient of 1, since a series of
unshifted data will exhibit perfect correlation with itself.
- Function will decay towards zero as lag increases.
- Used to detect non-randomness in data.
- Used to analyze decorrelation time.
- Indicator of the "memory" or persistence of processes.
- Dimensionless quantity.
- Calculated using a positive lag time.
- Used to analyze the effectiveness of persistence forecasts (forecasts consisting of
current observations).
- Persistence forecasts better for processes with long memory than for processes with
short memory.
- Autocorrelation function of a long memory process decays to zero more slowly than
that of a short memory process.
- Calculated using negative lag time.
- Correlation between the persistence forecast and the verifying observation is called
the correlation skill score.
Example: Calculate the autocorrelation function and correlation skill score of the NINO
3.4 Index from January 1856 to December 1998.
Locate Dataset and Variable |
-
Select the "Datasets by Catagory" link in the blue banner on the Data Library page.
- Click on the "Climate Indicies" link.
- Select the Indicies nino dataset.
- Select the "EXTENDED" link under the Datasets and Variables subheading.
- Select the "NINO34" link under the Datasets and Variables subheading.
CHECK
|
Select Temporal Domain |
-
Click on the "Data Selection" link in the function bar.
- Enter the text Jan 1856 to Dec 1998 in the Time text box.
- Press the Restrict Ranges button and then the Stop Selecting button.
CHECK
|
Calculate Autocorrelation Function |
*Note that the shiftdatashort function will shorten the range over which the two
variables will be correlated. For instance, a -36 lag will correlate values starting
at
January 1859 because 36 months (3 years) of data were moved foward.
|
View Autocorrelation Function |
- To see the results of this operation, choose the time series viewer.
- In the two text boxes that represent the x-axis ranges, enter 1. and -36. in the left
and right boxes, respectively. CHECK
This will reverse the order of the lag on the x-axis so that the autocorrelation function
is easier to visualize.
Autocorrelation Function of the NINO 3.4 Index
The autocorrelation function exhibits relatively high values at lags less than 5 months.
This
is indicative of the "memory" of the NINO 3.4 Index. Persistence forecasts up to a
few months
may be sufficiently accurate depending on their intended application.
Notice that the autocorrelation function crosses zero near -14 months, but then asymptotes
back
to a correlation of 0 as the lag becomes more negative.
Occasionally, the autocorrelation function will oscillate around 0 before eventually
decaying to 0.
|
Find Correlation Skill Score for Individual Lags |
-
Click on the right-most link in the blue source bar to exit the viewer.
- Select the "Tables" link in the function bar.
- Click on the "columnar table" link. CHECK
Lags smaller than -6 exhibit correlations above 0.5. Also observe that a -1 lag has
a correlation of .948.
This indicates that a persistance forecast for one month in advance will most likely
be quite accurate.
|
Significance Tables and Correlation
- Used to determine minimum threshold for the correlation coefficient at a given significance
level and degree of freedom.
- The 90%, 95%, 98% and 99% two-tailed significance levels of the correlation coefficient
are listed in the table below (assuming normally distributed datasets).
- Note that the degrees of freedom (df) = n - 2 for a sample of size n.
df
|
90%
|
95%
|
98%
|
99%
|
4
|
.729
|
.811
|
.882
|
.917
|
6
|
.622
|
.707
|
.789
|
.834
|
8
|
.549
|
.632
|
.716
|
.765
|
10
|
.497
|
.576
|
.658
|
.708
|
12
|
.458
|
.532
|
.612
|
.661
|
14
|
.426
|
.497
|
.574
|
.623
|
16
|
.400
|
.468
|
.542
|
.590
|
18
|
.378
|
.444
|
.516
|
.561
|
20
|
.360
|
.423
|
.492
|
.537
|
25
|
.323
|
.381
|
.445
|
.487
|
30
|
.295
|
.349
|
.409
|
.449
|
35
|
.275
|
.325
|
.381
|
.418
|
40
|
.257
|
.304
|
.358
|
.393
|
45
|
.243
|
.288
|
.338
|
.372
|
50
|
.231
|
.273
|
.322
|
.354
|
60
|
.211
|
.250
|
.295
|
.325
|
70
|
.195
|
.232 |
.274
|
.302
|
80
|
.183
|
.217
|
.256
|
.283
|
90
|
.173
|
.205
|
.242
|
.267
|
100
|
.164
|
.195
|
.230
|
.254
|
200
|
.116
|
.138
|
.164
|
.181
|
300
|
.095
|
.113
|
.134
|
.148
|
400
|
.082 |
.098
|
.116
|
.128
|
500
|
.073
|
.088
|
.104
|
.115
|
Snedecor, George W. Statistical Methods. p 473.
Example: Find the correlation between average summer (JJA) Sahel rainfall and sea
surface temperature anomalies during the time period 1983-1999, and then make a plot
of
correlation coefficients significant to the 90% level.
Locate Dataset and Variable |
-
Select the "Datasets by Catagory" link in the blue banner on the Data Library page.
- Click on the "Atmosphere" link.
- Select the NOAA NCEP CPC CAMS dataset.
- Select the "mean" link under the Datasets and Variables subheading.
- Select the "precipitation" link under the Datasets and Variables subheading.
CHECK
|
Select Temporal and Spatial Domains |
- Click on the "Data Selection" link in the function bar.
- Enter the text 20W to 40E, 11N to 20N, and Jan 1983 to Dec 1999 in the appropriate text boxes.
- Press the Restrict Ranges button and then the Stop Selecting button.
CHECK
|
Compute Summer Rainfall Averages |
- Press the OK button. CHECK
This command splits the time grid into two new time grids. The T grid has a period
of 12 months
and a step of 1. This grid represents data from January, Februrary, March, etc. The
T2 grid
has a step of 12 and represents the years from the beginning of the
dataset (1999) to the end of the dataset (1999). The following command selects July,
August, and
September values from the T grid and and the average command averages the rainfall over
those three months for each year.
|
Compute Spatial Average |
- Click on the "Filters" link in the function bar.
- Choose Average over "XY"
CHECK
|
Add Reyn_Smith Sea Surface Temperature Anomaly Dataset and Correlate with Precipitation
Data
|
|
Calculate the 10% Significance Level of the Correlation Coefficient and View Results |
Correlation Between Summer Sahel Rainfall and SSTA at a 90% Significance Level
Note the negative correlations in the Eastern Pacific.
These results suggest that during El NiƱo conditions, when SST's are above normal
in the
Eastern Pacific, below average summer rainfall in the Sahel is generally observed.
|